LIN Personal
Prof. Dr. Peter Heil
Arbeitsgruppenleiter
Systemphysiologie des Lernens
Leibniz-Institut für NeurobiologieBrenneckestr. 6
39118 Magdeburg
Deutschland
Telefon: +49 391 6263 94441
E-Mail: Peter.Heil@lin-magdeburg.de
- Publikationen
Publikationen
Heil P, Mohamed ESI, Matysiak A. 2021. Towards a unifying basis of auditory thresholds: Thresholds for multicomponent stimuli. Hearing Research. 410:Article 108349. https://doi.org/10.1016/j.heares.2021.108349Peterson AJ, Heil P. 2021. A simplified physiological model of rate-level functions of auditory-nerve fibers. Hearing Research. 406:Article 108258. https://doi.org/10.1016/j.heares.2021.108258Heil P. 2021. Comparing and modeling absolute auditory thresholds in an alternative-forced-choice and a yes-no procedure. Hearing Research. 403:Article 108164. https://doi.org/10.1016/j.heares.2020.108164Peterson AJ, Heil P. 2020. Phase locking of auditory-nerve fibers: the role of lowpass filtering by hair cells. Journal of Neuroscience. 40(24):4700-4714. https://doi.org/10.1523/JNEUROSCI.2269-19.2020Rufener KS, Kauk J, Ruhnau P, Repplinger S, Heil P, Zaehle T. 2020. Inconsistent effects of stochastic resonance on human auditory processing. Scientific Reports. 10(1):Article 6419. https://doi.org/10.1038/s41598-020-63332-wHeil P, Matysiak A. 2020. Absolute auditory threshold: Testing the absolute. European Journal of Neuroscience. 51(5):1224-1233. https://doi.org/10.1111/ejn.13765Heil P, Peterson AJ. 2019. Nelson's notch in the rate-level functions of auditory-nerve fibers might be caused by PIEZO2-mediated reverse-polarity currents in hair cells. Hearing Research. 381:Article 107783. https://doi.org/10.1016/j.heares.2019.107783Peterson AJ, Heil P. 2019. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope. Journal of Neuroscience. 39(21):4077-4099. https://doi.org/10.1523/JNEUROSCI.1801-18.2019Huang Y, Heil P, Brosch M. 2019. Associations between sounds and actions in early auditory cortex of nonhuman primates. eLife. 8:Article e43281. https://doi.org/10.7554/eLife.43281Peterson AJ, Huet A, Bourien J, Puel JL, Heil P. 2018. Recovery of auditory-nerve-fiber spike amplitude under natural excitation conditions. Hearing Research. 370:248-263. https://doi.org/10.1016/j.heares.2018.08.007Peterson AJ, Heil P. 2018. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hearing Research. 363:1-27. https://doi.org/10.1016/j.heares.2017.09.005Heil P, Matysiak A, Neubauer H. 2017. A probabilistic Poisson-based model accounts for an extensive set of absolute auditory threshold measurements. Hearing Research. 353:135-161. https://doi.org/10.1016/j.heares.2017.06.011Friedrich B, Heil P. 2017. Onset-duration matching of acoustic stimuli revisited: Conventional arithmetic vs. proposed geometric measures of accuracy and precision. Frontiers in Psychology. 7(JAN):Article 2013. https://doi.org/10.3389/fpsyg.2016.02013Heil P, Peterson AJ. 2017. Spike timing in auditory-nerve fibers during spontaneous activity and phase locking. Synapse. 71(1):5-36. https://doi.org/10.1002/syn.21925Huang Y, Matysiak A, Heil P, König R, Brosch M. 2016. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates. eLife. 5(JULY):Article e15441. https://doi.org/10.7554/eLife.15441Heil P, Peterson AJ. 2015. Basic response properties of auditory nerve fibers: a review. Cell and Tissue Research. 361(1):129-158. https://doi.org/10.1007/s00441-015-2177-9Budinger E, Brechmann A, Brosch M, Heil P, König R, Ohl FW, Scheich H. 2015. Auditory cortex 2014 - towards a synthesis of human and animal research. European Journal of Neuroscience. 41(5):515-517. https://doi.org/10.1111/ejn.12832König R, Matysiak A, Kordecki W, Sieluzycki C, Zacharias N, Heil P. 2015. Averaging auditory evoked magnetoencephalographic and electroencephalographic responses: A critical discussion. European Journal of Neuroscience. 41(5):631-640. https://doi.org/10.1111/ejn.12833Deike S, Heil P, Böckmann-Barthel M, Brechmann A. 2015. Decision making and ambiguity in auditory stream segregation. Frontiers in Neuroscience. 9(JUL):Article 266. https://doi.org/10.3389/fnins.2015.00266Peterson AJ, Irvine DRF, Heil P. 2014. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers. Journal of Neuroscience. 34(45):15097-15109. https://doi.org/10.1523/JNEUROSCI.0903-14.2014Heil P. 2014. Auditory Nerve Response, Afferent Signals. In Encyclopedia of Computational Neuroscience. New York: Springer. pp. 1-3. https://doi.org/I 10.1007/978-1-4614-7320-6_424-6Heil P. 2014. Towards a unifying basis of auditory thresholds: Binaural summation. JARO - Journal of the Association for Research in Otolaryngology. 15(2):219-234. https://doi.org/10.1007/s10162-013-0432-xMatysiak A, Kordecki W, Sieluzycki C, Zacharias N, Heil P, König R. 2013. Variance stabilization for computing and comparing grand mean waveforms in MEG and EEG. Psychophysiology. 50(7):627-639. https://doi.org/10.1111/psyp.12047Pohl NU, Slabbekoorn H, Neubauer H, Heil P, Klump GM, Langemann U. 2013. Why longer song elements are easier to detect: Threshold level-duration functions in the Great Tit and comparison with human data. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 199(3):239-252. https://doi.org/10.1007/s00359-012-0789-zHeil P, Verhey JL, Zoefel B. 2013. Modelling detection thresholds for sounds repeated at different delays. Hearing Research. 296:83-95. https://doi.org/10.1016/j.heares.2012.12.002Heil P, Neubauer H, Tetschke M, Irvine DRF. 2013. A probabilistic model of absolute auditory thresholds and its possible physiological basis. In Advances in Experimental Medicine and Biology. pp. 21-29. (Advances in experimental medicine and biology). https://doi.org/10.1007/978-1-4614-1590-9_3Zoefel B, Heil P. 2013. Detection of near-threshold sounds is independent of eeg phase in common frequency bands. Frontiers in Psychology. 4(MAY):Article Article 262. https://doi.org/10.3389/fpsyg.2013.00262Zacharias N, König R, Heil P. 2012. Stimulation-history effects on the M100 revealed by its differential dependence on the stimulus onset interval. Psychophysiology. 49(7):909-919. https://doi.org/10.1111/j.1469-8986.2012.01370.xBudinger E, Heil P. 2012. Anatomy of the auditory cortex. In Listening to Speech: An Auditory Perspective. Taylor & Francis Group. pp. 91-113. https://doi.org/10.4324/9780203933107Deike S, Heil P, Böckmann-Barthel M, Brechmann A. 2012. The build-up of auditory stream segregation: A different perspective. Frontiers in Psychology. 3(OCT):Article Article 461. https://doi.org/10.3389/fpsyg.2012.00461Heil P, Neubauer H, Irvine DRF. 2011. An improved model for the rate-level functions of auditory-nerve fibers. Journal of Neuroscience. 31(43):15424-15437. https://doi.org/10.1523/JNEUROSCI.1638-11.2011Zacharias N, Sieluzycki C, Kordecki W, König R, Heil P. 2011. The M100 component of evoked magnetic fields differs by scaling factors: Implications for signal averaging. Psychophysiology. 48(8):1069-1082. https://doi.org/10.1111/j.1469-8986.2011.01183.xBrechmann A, Brosch M, Budinger E, Heil P, König R, Ohl F, Scheich H. 2011. Auditory cortex - Current concepts in human and animal research. Hearing Research. 271(1-2):1-2. https://doi.org/10.1016/j.heares.2010.10.016Heil P, Neubauer H, Irvine DRF. 2010. A new model for the shapes of rate-level functions of auditory-nerve fibers. In Proceedings of the 20th International Congress on Acoustics. pp. 3156-3163.Zacharias N, Sieluzycki C, Matysiak MA, König R, Heil P. 2010. Relevant observations for averaging stimulus evoked magnetic fields across trials and across subjects. In 17th International Conference on Biomagnetism Advances in Biomagnetism. pp. 179-182. https://doi.org/10.1007/978-3-642-12197-5_39Heil P, Neubauer H. 2010. Summing across different active zones can explain the quasi-linear Ca 2+-dependencies of exocytosis by receptor cells. Frontiers in Synaptic Neuroscience. 2(NOV):1-15. https://doi.org/10.3389/fnsyn.2010.00148Neubauer H, Köppl C, Heil P. 2009. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): Analyses of interspike interval distributions. Journal of Neurophysiology. 101(6):3169-3191. https://doi.org/10.1152/jn.90779.2008Neubauer H, Heil P. 2008. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers. Brain Research. 1220:208-223. https://doi.org/10.1016/j.brainres.2007.08.081König R, Sieluzycki C, Simserides C, Heil P, Scheich H. 2008. Effects of the task of categorizing FM direction on auditory evoked magnetic fields in the human auditory cortex. Brain Research. 1220:102-117. https://doi.org/10.1016/j.brainres.2008.02.086Heil P, Neubauer H, Brown M, Irvine DRF. 2008. Towards a unifying basis of auditory thresholds: Distributions of the first-spike latencies of auditory-nerve fibers. Hearing Research. 238(1-2):25-38. https://doi.org/10.1016/j.heares.2007.09.014Heil P, Neubauer H, Irvine DRF, Brown M. 2007. Spontaneous activity of auditory-nerve fibers: Insights into stochastic processes at ribbon synapses. Journal of Neuroscience. 27(31):8457-74. https://doi.org/10.1523/JNEUROSCI.1512-07.2007Budinger E, Heil P, Hess A, Scheich H. 2006. Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems. Neuroscience. 143(4):1065-1083. https://doi.org/10.1016/j.neuroscience.2006.08.035Tiefenau A, Neubauer H, von Specht H, Heil P. 2006. Correcting for false alarms in a simple reaction time task. Brain Research. 1122(1):99-115. https://doi.org/10.1016/j.brainres.2006.09.004Heil P, Neubauer H, Tiefenau A, Von Specht H. 2006. Comparison of absolute thresholds derived from an adaptive forced-choice procedure and from reaction probabilities and reaction times in a simple reaction time paradigm. JARO - Journal of the Association for Research in Otolaryngology. 7(3):279-298. https://doi.org/10.1007/s10162-006-0042-yKönig R, Heil P, Budinger E, Scheich H 2005. The auditory cortex: Towards a synthesis of human and animal research. Lawrence Earlbaum, New Jersey, USA. 493 p. https://doi.org/10.4324/9781410613066Heil P, Neubauer H. 2005. Toward a unifying basis of auditory thresholds. In The Auditory Cortex: A Synthesis of Human and Animal Research. Routledge Taylor & Francis Group. pp. 207-222. https://doi.org/10.4324/9781410613066Budinger E, Heil P. 2005. Anatomy of the auditory cortex. In Listening to Speech: An Auditory Perspective. Lawrence Earlbaum, New Jersey, USA. pp. 91-113.Neubauer H, Heil P. 2004. Towards a unifying basis of auditory thresholds: The effects of hearing loss on temporal integration reconsidered. JARO - Journal of the Association for Research in Otolaryngology. 5(4):436-458. https://doi.org/10.1007/s10162-004-5031-4Heil P. 2004. First-spike latency of auditory neurons revisited. Current Opinion in Neurobiology. 14(4):461-467. https://doi.org/10.1016/j.conb.2004.07.002Heil P, Neubauer H. 2004. Auditory thresholds re-visited. Pressnitzer D, de Cheveigne A, McAdams S, Collet L, editors. In Auditory Signal Processing: Physiology, Psychoacoustics, and Models. Springer. pp. 454-470.Heil P, Neubauer H. 2004. New insights into absolute thresholds of normal and hearing-impaired ears. Zeitschrift für Audiologie. 43(4):188-195.Heil P. 2003. Coding of temporal onset envelope in the auditory system. Speech Communication. 41(1):123-134. https://doi.org/10.1016/S0167-6393(02)00099-7Heil P, Neubauer H. 2003. A unifying basis of auditory thresholds based on temporal summation. Proceedings of the National Academy of Sciences of the United States of America. 100(10):6151-6156. https://doi.org/10.1073/pnas.1030017100Bronchti G, Heil P, Sadka R, Hess A, Scheich H, Wollberg Z. 2002. Auditory activation of 'visual' cortical areas in the blind mole rat (Spalax ehrenbergi). European Journal of Neuroscience. 16(2):311-329. https://doi.org/10.1046/j.1460-9568.2002.02063.xHeil P. 2001. Representation of sound onsets in the auditory system. Audiology and Neuro-Otology. 6(4):167-172. https://doi.org/10.1159/000046826Heil P, Neubauer H. 2001. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers. Journal of Neuroscience. 21(18):7404-7415. https://doi.org/10.1523/jneurosci.21-18-07404.2001Biermann S, Heil P. 2000. Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex. Journal of Neurophysiology. 84(5):2426-2439. https://doi.org/10.1152/jn.2000.84.5.2426Budinger E, Heil P, Scheich H. 2000. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience. 12(7):2425-2451. https://doi.org/10.1046/j.1460-9568.2000.00142.xBudinger E, Heil P, Scheich H. 2000. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. European Journal of Neuroscience. 12(7):2452-2474. https://doi.org/10.1046/j.1460-9568.2000.00143.xHess A, Stiller D, Kaulisch T, Heil P, Scheich H. 2000. New insights into the hemodynamic blood oxygenation level-dependent response through combination of functional magnetic resonance imaging and optical recording in gerbil barrel cortex. Journal of Neuroscience. 20(9):3328-3338. https://doi.org/10.1523/jneurosci.20-09-03328.2000Hess A, Stiller D, Heil P. 1999. On the BOLD effect: New insights into the hemodynamic response through combination of fMRI and Optical imaging in the barrel field. NeuroImage. 9(6 PART II).Heil P. 1998. Further observations on the threshold model of latency for auditory neurons. Behavioural Brain Research. 95(2):233-236. https://doi.org/10.1016/S0166-4328(98)00044-8Heil P. 1998. Neuronal coding of interaural transient envelope disparities. European Journal of Neuroscience. 10(9):2831-2847. https://doi.org/10.1111/j.1460-9568.1998.00293.xHeil P, Irvine DRF. 1998. Functional specialization in auditory cortex: Responses to frequency- modulated stimuli in the cat's posterior auditory field. Journal of Neurophysiology. 79(6):3041-3059. https://doi.org/10.1152/jn.1998.79.6.3041Heil P, Irvine DRF. 1998. The posterior field P of cat auditory cortex: Coding of envelope transients. Cerebral Cortex. 8(2):125-141. https://doi.org/10.1093/cercor/8.2.125Schulze H, Ohl FW, Heil P, Scheich H. 1997. Field-specific responses in the auditory cortex of the unanaesthetized Mongolian gerbil to tones and slow frequency modulations. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 181(6):573-589. https://doi.org/10.1007/s003590050141Langner G, Sams M, Heil P, Schulze H. 1997. Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: Evidence from magnetoencephalography. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 181(6):665-676. https://doi.org/10.1007/s003590050148Heil P, Irvlne DRF. 1997. First-spike timing of auditory-nerve fibers and comparison with auditory cortex. Journal of Neurophysiology. 78(5):2438-2454. https://doi.org/10.1152/jn.1997.78.5.2438Heil P. 1997. Auditory cortical onset responses revisited. I. First-spike timing. Journal of Neurophysiology. 77(5):2616-2641. https://doi.org/10.1152/jn.1997.77.5.2616Heil P. 1997. Auditory cortical onset responses revisited. II. Response strength. Journal of Neurophysiology. 77(5):2642-2660. https://doi.org/10.1152/jn.1997.77.5.2642Heil P. 1997. Aspects of temporal processing of FM stimuli in primary auditory cortex. Acta Oto-Laryngologica, Supplement. 532(532):99-102.Heil P, Irvine DRF. 1996. On determinants of first-spike latency in auditory cortex. NeuroReport. 7(18):3073-3076. https://doi.org/10.1097/00001756-199611250-00056Heil P, Schulze H, Langner G. 1995. Ontogenetic development of periodicity coding in the inferior colliculus of the Mongolian gerbil. Auditory Neuroscience. 1(4):363-383.Heil P, Rajan R, Irvine DRF. 1994. Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hearing Research. 76(1-2):188-202. https://doi.org/10.1016/0378-5955(94)90099-XRajan R, Irvine DRF, Wise LZ, Heil P. 1993. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. Journal of Comparative Neurology. 338(1):17-49. https://doi.org/10.1002/cne.903380104Thomas H, Tillein J, Heil P, Scheich H. 1993. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields. European Journal of Neuroscience. 5(7):882-897. https://doi.org/10.1111/j.1460-9568.1993.tb00940.xScheich H, Heil P, Langner G. 1993. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus) II. Tonotopic 2-deoxyglucose. European Journal of Neuroscience. 5(7):898-914. https://doi.org/10.1111/j.1460-9568.1993.tb00941.xHeil P, Langner G, Scheich H. 1992. Processing of frequency-modulated stimuli in the chick auditory cortex analogue: evidence for topographic representations and possible mechanisms of rate and directional sensitivity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 171(5):583-600. https://doi.org/10.1007/BF00194107Heil P, Rajan R, Irvine DRF. 1992. Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I. Effects of variation of stimulus parameters. Hearing Research. 63(1-2):108-134. https://doi.org/10.1016/0378-5955(92)90080-7Heil P, Rajan R, Irvine DRF. 1992. Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. II: Organization of response properties along the 'isofrequency' dimension. Hearing Research. 63(1-2):135-156. https://doi.org/10.1016/0378-5955(92)90081-WHeil P, Scheich H. 1992. Spatial representation of frequency-modulated signals in the tonotopically organized auditory cortex analogue of the chick. Journal of Comparative Neurology. 322(4):548-565. https://doi.org/10.1002/cne.903220409Heil P, Scheich H. 1992. Postnatal shift of tonotopic organization in the chick auditory cortex analogue. NeuroReport. 3(5):381-384. https://doi.org/10.1097/00001756-199205000-00001Heil P, Bronchti G, Wollberg Z, Scheich H. 1991. Invasion of visual cortex by the auditory system in the naturally blind mole rat. NeuroReport. 2(12):735-738. https://doi.org/10.1097/00001756-199112000-00001Heil P, Scheich H. 1991. Functional organization of the avian auditory cortex analogue. II. Topographic distribution of latency. Brain Research. 539(1):121-125. https://doi.org/10.1016/0006-8993(91)90693-PHeil P, Scheich H. 1991. Functional organization of the avian auditory cortex analogue. I. Topographic representation of isointensity bandwidth. Brain Research. 539(1):110-120. https://doi.org/10.1016/0006-8993(91)90692-OBronchti G, Heil P, Scheich H, Wollberg Z. 1989. Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): I. 2-Deoxyglucose study of subcortical centers. Journal of Comparative Neurology. 284(2):253-274. https://doi.org/10.1002/cne.902840209Heil P, Scheich H. 1986. Effects of unilateral and bilateral cochlea removal on 2-deoxyglucose patterns in the chick auditory system. Journal of Comparative Neurology. 252(3):279-301. https://doi.org/10.1002/cne.902520302Heil P, Scheich H. 1985. Quantitative analysis and two-dimensional reconstruction of the tonotopic organization of the auditory field L in the chick from 2-deoxyglucose data. Experimental Brain Research. 58(3):532-543. https://doi.org/10.1007/BF00235869 - Drittmittel
Drittmittel
2022 - 2022 (DFG)
Internationale wissenschaftliche Veranstaltung: "7. Internationale Hörkortextagung" Magdeburg2016 - 2020 (DFG)
Mechanismen der Phasenkopplung von Hörnervenfasern: ein Modellierungsansatz2016 - 2017 (DFG)
"Neuronale Korrelate des sensorischen Arbeitsgedächtnisses im Hörcortex von Menschen und Affen"2013 - 2017 (DFG)
SFB TRR 31/ A06: Vorverarbeitung und Erkennung der zeitlichen Strukturen akustischer Signale im Hörsystem2013 - 2016 (DFG)
Mechanisms of the phase - locking of auditory nerve fibers: a modeling approach2012 - 2015 (DFG)
Neuronal correlates of sensory working memory in the auditory cortex of humans an monkeys