LIN Personal
Dr. Anna Karpova
Wissenschaftlerin
Neuroplastizität
Leibniz-Institut für NeurobiologieBrenneckestr. 6
39118 Magdeburg
Deutschland
Telefon: +49 391 6263 94371
E-Mail: Anna.Karpova@lin-magdeburg.de
ORCID: 0000-0001-7423-4764
- Publikationen
Publikationen
Mocellin P, Barnstedt O, Luxem K, Kaneko H, Vieweg S, Henschke JU, Dalügge D, Fuhrmann F, Karpova A, Pakan JMP, et al. 2024. A septal-ventral tegmental area circuit drives exploratory behavior. Neuron. 112(6):1020-1032.e7. https://doi.org/10.1016/j.neuron.2023.12.016Karpova A, Aly AAA, Marosi EL, Mikulovic S. 2024. Fiber-based in vivo imaging: unveiling avenues for exploring mechanisms of synaptic plasticity and neuronal adaptations underlying behavior. Neurophotonics. 11(Suppl 1):Article S11507. https://doi.org/10.1117/1.NPh.11.S1.S11507Karpova A, Samer S, Turacak R, Yuanxiang P, Kreutz MR. 2023. Integration of nuclear Ca2+ transients and subnuclear protein shuttling provides a novel mechanism for the regulation of CREB-dependent gene expression. Cellular and Molecular Life Sciences. 80(8):Article 228. https://doi.org/10.1007/s00018-023-04876-8Andres-Alonso M, Grochowska KM, Gundelfinger ED, Karpova A, Kreutz MR. 2023. Protein transport from pre- and postsynapse to the nucleus: Mechanisms and functional implications. Molecular and Cellular Neurosciences. 125:Article 103854. https://doi.org/10.1016/j.mcn.2023.103854Grochowska KM, Gomes GM, Raman R, Kaushik R, Sosulina L, Kaneko H, Oelschlegel AM, Yuanxiang P, Reyes-Resina I, Bayraktar G, et al. 2023. Jacob-induced transcriptional inactivation of CREB promotes Aβ-induced synapse loss in Alzheimer's disease. The EMBO journal. 42(4):Article e112453. https://doi.org/10.15252/embj.2022112453Gomes GM, Bär J, Karpova A, Kreutz MR. 2023. A Jacob/nsmf gene knockout does not protect against acute hypoxia- and NMDA-induced excitotoxic cell death. Molecular brain. 16(1):Article 23. https://doi.org/10.1186/s13041-023-01012-2Gomes G, Bär J, Karpova A, Kreutz MR. 2022. A Jacob/nsmf gene knockout does not protect against hypoxia- and NMDA-induced neuronal cell death. bioRxiv. https://doi.org/doi:10.1101/2022.12.20.521175Raman R, Karpova A, Kreutz MR. 2022. One-step purification of tag free and soluble lamin B1 from an E. coli bacterial expression system. Protein Expression and Purification. 193:Article 106057. https://doi.org/10.1016/j.pep.2022.106057Grochowska KM, Andres-Alonso M, Karpova A, Kreutz MR. 2022. The needs of a synapse-How local organelles serve synaptic proteostasis. The EMBO journal. 41(7):Article e110057. https://doi.org/10.15252/embj.2021110057Gundelfinger ED, Karpova A, Pielot R, Garner CC, Kreutz MR. 2022. Organization of Presynaptic Autophagy-Related Processes. Frontiers in Synaptic Neuroscience. 14:Article 829354. https://doi.org/10.3389/fnsyn.2022.829354Confettura AD, Cuboni E, Ammar MR, Jia S, Gomes GM, Yuanxiang P, Raman R, Li T, Grochowska KM, Ahrends R, et al. 2022. Neddylation-dependent protein degradation is a nexus between synaptic insulin resistance, neuroinflammation and Alzheimer's disease. Translational neurodegeneration. 11(1):Article 2. https://doi.org/10.1186/s40035-021-00277-8Grochowska KM, Bär J, Gomes GM, Kreutz MR, Karpova A. 2021. Jacob, a Synapto-Nuclear Protein Messenger Linking N-methyl-D-aspartate Receptor Activation to Nuclear Gene Expression. Frontiers in Synaptic Neuroscience. 13:Article 787494. https://doi.org/10.3389/fnsyn.2021.787494Andres-Alonso M, Kreutz MR, Karpova A. 2021. Autophagy and the endolysosomal system in presynaptic function. Cellular and Molecular Life Sciences. 78(6):2621-2639. https://doi.org/10.1007/s00018-020-03722-5, https://doi.org/10.1007/s00018-020-03722-5Samer S, Raman R, Laube G, Kreutz MR, Karpova A. 2021. The nuclear lamina is a hub for the nuclear function of Jacob. Molecular brain. 14(1):Article 9. https://doi.org/10.1186/s13041-020-00722-1Bayraktar G, Yuanxiang P, Confettura AD, Gomes GM, Raza SA, Stork O, Tajima S, Suetake I, Karpova A, Yildirim F, et al. 2020. Synaptic control of DNA methylation involves activity-dependent degradation of DNMT3A1 in the nucleus. Neuropsychopharmacology. 45(12):2120-2130. https://doi.org/10.1038/s41386-020-0780-2Grochowska KM, Kaushik R, Gomes GM, Raman R, Bär J, Bayraktar G, Samer S, Reyes-Resina I, Spilker C, Woo MS, et al. 2020. A molecular mechanism by which amyloid-β induces inactivation of CREB in Alzheimer’s Disease. bioRxiv. https://doi.org/10.1101/2020.01.08.898304Andres-Alonso M, Ammar MR, Butnaru I, Gomes GM, Acuña Sanhueza G, Raman R, Yuanxiang P, Borgmeyer M, Lopez-Rojas J, Raza SA, et al. 2019. SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nature Communications. 10(1):Article 5448. https://doi.org/10.1038/s41467-019-13224-zKravchick DO, Karpova A, Hrdinka M, Lopez-Rojas J, Iacobas S, Carbonell AU, Iacobas DA, Kreutz MR, Jordan BA. 2016. Synaptonuclear messenger PRR7 inhibits c-Jun ubiquitination and regulates NMDA-mediated excitotoxicity. EMBO Journal. 35(17):1923-1934. https://doi.org/10.15252/embj.201593070Melgarejo da Rosa M, Yuanxiang PA, Brambilla R, Kreutz MR, Karpova A. 2016. Synaptic GluN2B/CaMKII-α signaling induces synapto-nuclear transport of ERK and jacob. Frontiers in Molecular Neuroscience. 9(AUG):Article 66. https://doi.org/10.3389/fnmol.2016.00066Dinamarca MC, Guzzetti F, Karpova A, Lim D, Mitro N, Musardo S, Mellone M, Marcello E, Stanic J, Samaddar T, et al. 2016. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. eLife. 5(MARCH2016):Article e12430. https://doi.org/10.7554/eLife.12430.001Spilker C, Nullmeier S, Grochowska KM, Schumacher A, Butnaru I, Macharadze T, Gomes GM, YuanXiang P, Bayraktar G, Rodenstein C, et al. 2016. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics. 12(3):Article e1005907. https://doi.org/10.1371/journal.pgen.1005907Lever MB, Karpova A, Kreutz MR. 2015. An importin code in neuronal transport from synapse-to-nucleus?. Frontiers in Molecular Neuroscience. 8(JULY):Article 33. https://doi.org/10.3389/fnmol.2015.00033Panayotis N, Karpova A, Kreutz MR, Fainzilber M. 2015. Macromolecular transport in synapse to nucleus communication. Trends in Neurosciences. 38(2):108-116. https://doi.org/10.1016/j.tins.2014.12.001Yuanxiang P, Bera S, Karpova A, Kreutz MR, Mikhaylova M. 2014. Isolation of CA1 nuclear enriched fractions from hippocampal slices to study activity-dependent nuclear import of synapto-nuclear messenger proteins. Journal of Visualized Experiments. (90):Article e51310. https://doi.org/10.3791/51310Gomes GM, Dalmolin GD, Bär J, Karpova A, Mello CF, Kreutz MR, Rubin MA. 2014. Inhibition of the polyamine system counteracts β-amyloid peptide-induced memory impairment in mice: Involvement of extrasynaptic NMDA receptors. PLoS ONE. 9(6):Article e99184. https://doi.org/10.1371/journal.pone.0099184Mikhaylova M, Karpova A, Bär J, Bethge P, YuanXiang P, Chen Y, Zuschratter W, Behnisch T, Kreutz MR. 2014. Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain. Brain Structure and Function. 219(3):843-860. https://doi.org/10.1007/s00429-013-0539-1Heine M, Karpova A, Gundelfinger ED. 2013. Counting gephyrins, one at a time: A nanoscale view on the inhibitory postsynapse. Neuron. 79(2):213-216. https://doi.org/10.1016/j.neuron.2013.07.004Karpova A, Mikhaylova M, Bera S, Bär J, Reddy PP, Behnisch T, Rankovic V, Spilker C, Bethge P, Sahin J, et al. 2013. Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell. 152(5):1119-1133. https://doi.org/10.1016/j.cell.2013.02.002Hradsky J, Mikhaylova M, Karpova A, Kreutz MR, Zuschratter W. 2013. Super-resolution microscopy of the neuronal calcium-binding proteins calneuron-1 and caldendrin. In Methods in Molecular Biology. pp. 147-169. (Methods in molecular biology (Clifton, N.J.)). https://doi.org/10.1007/978-1-62703-230-8_10Karpova A, Bär J, Kreutz MR. 2012. Long-distance signaling from synapse to nucleus via protein messengers. In Advances in Experimental Medicine and Biology. Springer. pp. 355-376. (Advances in Experimental Medicine and Biology). https://doi.org/10.1007/978-3-7091-0932-8_16Behnisch T, YuanXiang P, Bethge P, Parvez S, Chen Y, Yu J, Karpova A, Frey JU, Mikhaylova M, Kreutz MR. 2011. Nuclear translocation of Jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression. PLoS ONE. 6(2):e17276. https://doi.org/10.1371/journal.pone.0017276Kindler S, Dieterich DC, Schütt J, Sahin J, Karpova A, Mikhaylova M, Schob C, Gundelfinger ED, Kreienkamp HJ, Kreutz MR. 2009. Dendritic mRNA targeting of Jacob and N-methyl-D-aspartate-induced nuclear translocation after calpain-mediated proteolysis. Journal of Biological Chemistry. 284(37):25431-25440. https://doi.org/10.1074/jbc.M109.022137Dieterich DC, Karpova A, Mikhaylova M, Zdobnova I, König I, Landwehr M, Kreutz M, Smalla KH, Richter K, Landgraf P, et al. 2008. Caldendrin-Jacob: A protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biology. 6(2):286-306. https://doi.org/10.1371/journal.pbio.0060034Karpova A, Mikhaylova M, Thomas U, Knöpfel T, Behnisch T. 2006. Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. Journal of Neuroscience. 26(18):4949-4955. https://doi.org/10.1523/JNEUROSCI.4573-05.2006Karpova A, Sanna PP, Behnisch T. 2006. Involvement of multiple phosphatidylinositol 3-kinase-dependent pathways in the persistence of late-phase long term potentiation expression. Neuroscience. 137(3):833-841. https://doi.org/10.1016/j.neuroscience.2005.10.012Karpova AV, Bikbaev AF, Coenen AML, Van Luijtelaar G. 2005. Morphometric Golgi study of cortical locations in WAG/Rij rats: The cortical focus theory. Neuroscience Research. 51(2):119-128. https://doi.org/10.1016/j.neures.2004.10.004 - Drittmittel
Drittmittel
2021 - 2025 (DFG)
Forschungsgruppe: Membrantransportprozesse zur Regulation präsynaptischer Proteostase - Teilprojekt RP6 "Biogenese, Transport und Signalfunktion von Amphisomen an präsynaptischen Boutons2020 - 2024 (DFG)
SFB 1436 TP A02: Die Bildung von Gedächtnisspuren über Exzitations-Transkriptionskopplung
https://sfb1436.de/