LIN Personal
Dr. Christina Spilker
EU- und Forschungsreferentin
Geschäftsstelle
Leibniz-Institut für NeurobiologieBrenneckestr. 6
39118 Magdeburg
Deutschland
Telefon: +49 391 6263 92081
E-Mail: Christina.Spilker@lin-magdeburg.de
ORCID: 0000-0002-7996-7673
- Publikationen
Publikationen
Grochowska KM, Gomes GM, Raman R, Kaushik R, Sosulina L, Kaneko H, Oelschlegel AM, Yuanxiang P, Reyes-Resina I, Bayraktar G, et al. 2023. Jacob-induced transcriptional inactivation of CREB promotes Aβ-induced synapse loss in Alzheimer's disease. The EMBO journal. 42(4):Article e112453. https://doi.org/10.15252/embj.2022112453Grochowska KM, Kaushik R, Gomes GM, Raman R, Bär J, Bayraktar G, Samer S, Reyes-Resina I, Spilker C, Woo MS, et al. 2020. A molecular mechanism by which amyloid-β induces inactivation of CREB in Alzheimer’s Disease. bioRxiv. https://doi.org/10.1101/2020.01.08.898304Andres-Alonso M, Ammar MR, Butnaru I, Gomes GM, Acuña Sanhueza G, Raman R, Yuanxiang P, Borgmeyer M, Lopez-Rojas J, Raza SA, et al. 2019. SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nature Communications. 10(1):Article 5448. https://doi.org/10.1038/s41467-019-13224-zMikhaylova M, Bär J, van Bommel B, Schätzle P, YuanXiang PA, Raman R, Hradsky J, Konietzny A, Loktionov EY, Reddy PP, et al. 2018. Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines. Neuron. 97(5):1110-1125.e14. https://doi.org/10.1016/j.neuron.2018.01.046Spilker C, Grochowska KM, Kreutz MR. 2016. What do we learn from the murine Jacob/Nsmf gene knockout for human disease?. Rare Diseases. 4(1):e1241361. https://doi.org/10.1080/21675511.2016.1241361Spilker C, Nullmeier S, Grochowska KM, Schumacher A, Butnaru I, Macharadze T, Gomes GM, YuanXiang P, Bayraktar G, Rodenstein C, et al. 2016. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics. 12(3):Article e1005907. https://doi.org/10.1371/journal.pgen.1005907Reddy PP, Raghuram V, Hradsky J, Spilker C, Chakraborty A, Sharma Y, Mikhaylova M, Kreutz MR. 2014. Molecular dynamics of the neuronal EF-hand Ca2+-sensor Caldendrin. PLoS ONE. 9(7):Article e103186. https://doi.org/10.1371/journal.pone.0103186Karpova A, Mikhaylova M, Bera S, Bär J, Reddy PP, Behnisch T, Rankovic V, Spilker C, Bethge P, Sahin J, et al. 2013. Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell. 152(5):1119-1133. https://doi.org/10.1016/j.cell.2013.02.002Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, Janssen AL, Udvardi PT, Shiban E, Spilker C, et al. 2012. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 486(7402):256-260. https://doi.org/10.1038/nature11015Spilker C, Kreutz MR. 2010. RapGAPs in brain: Multipurpose players in neuronal Rap signalling. European Journal of Neuroscience. 32(1):1-9. https://doi.org/10.1111/j.1460-9568.2010.07273.xDieterich DC, Karpova A, Mikhaylova M, Zdobnova I, König I, Landwehr M, Kreutz M, Smalla KH, Richter K, Landgraf P, et al. 2008. Caldendrin-Jacob: A protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biology. 6(2):286-306. https://doi.org/10.1371/journal.pbio.0060034Spilker C, Acuna Sanhueza G, Böckers TM, Kreutz MR, Gundelfinger ED. 2008. SPAR2, a novel SPAR-related protein with GAP activity for Rap1 and Rap2. Journal of Neurochemistry. 104(1):187-201. https://doi.org/10.1111/j.1471-4159.2007.04991.xKreutz MR, König I, Mikhaylova M, Spilker C, Zuschratter W. 2008. Molecular mechanisms of dendritic spine plasticity in development and aging. Lajtha A, Perez-Polo JR, Rossner S, editors. In Developmental and aging changes. New York: Springer. pp. 245-259. (Handbook of Neurochemistry and Molecular Neurobiology).Sandoval M, Sandoval R, Thomas U, Spilker C, Smalla KH, Falcon R, Marengo JJ, Calderón R, Saavedra V, Heumann R, et al. 2007. Antagonistic effects of TrkB and p75NTR on NMDA receptor currents in post-synaptic densities transplanted into Xenopus oocytes. Journal of Neurochemistry. 101(6):1672-1684. https://doi.org/10.1111/j.1471-4159.2007.04519.xWendholt D, Spilker C, Schmitt A, Dolnik A, Smalla KH, Proepper C, Bockmann J, Sobue K, Gundelfinger ED, Kreutz MR, et al. 2006. ProSAP-interacting protein 1 (ProSAPiP1), a novel protein of the postsynaptic density that links the spine-associated Rap-Gap (SPAR) to the scaffolding protein ProSAP2/Shank3. Journal of Biological Chemistry. 281(19):13805-13816. https://doi.org/10.1074/jbc.M601101200Blazejczyk M, Wojda U, Sobczak A, Spilker C, Bernstein HG, Gundelfinger ED, Kreutz MR, Kuznicki J. 2006. Ca2+-independent binding and cellular expression profiles question a significant role of calmyrin in transduction of Ca 2+-signals to Alzheimer's disease-related presenilin 2 in forebrain. Biochimica et Biophysica Acta - Molecular Basis of Disease. 1762(1):66-72. https://doi.org/10.1016/j.bbadis.2005.09.006Boeckers TM, Liedtke T, Spilker C, Dresbach T, Bockmann J, Kreutz MR, Gundelfinger ED. 2005. C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3. Journal of Neurochemistry. 92(3):519-524. https://doi.org/10.1111/j.1471-4159.2004.02910.xSpilker C, Braunewell KH. 2003. Calcium-myristoyl switch, subcellular localization, and calcium-dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons. Molecular and Cellular Neurosciences. 24(3):766-778. https://doi.org/10.1016/S1044-7431(03)00242-2Dresbach T, Hempelmann A, Spilker C, Tom Dieck S, Altrock WD, Zuschratter W, Garner CC, Gundelfinger ED. 2003. Functional regions of the presynaptic cytomatrix protein Bassoon: Significance for synaptic targeting and cytomatrix anchoring. Molecular and Cellular Neurosciences. 23(2):279-291. https://doi.org/10.1016/S1044-7431(03)00015-0Bernstein HG, Becker A, Keilhoff G, Spilker C, Gorczyca WA, Braunewell KH, Grecksch G. 2003. Brain region-specific changes in the expression of calcium sensor proteins after repeated applications of ketamine to rats. Neuroscience Letters. 339(2):95-98. https://doi.org/10.1016/S0304-3940(02)01482-9Spilker C, Gundelfinger ED, Braunewell KH. 2002. Evidence for different functional properties of the neuronal calcium sensor proteins VILIP-1 and VILIP-3: From subcellular localization to cellular function. Biochimica et Biophysica Acta - Proteins and Proteomics. 1600(1-2):118-127. https://doi.org/10.1016/S1570-9639(02)00452-1Spilker C, Dresbach T, Braunewell KH. 2002. Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. Journal of Neuroscience. 22(17):7331-7339. https://doi.org/10.1523/jneurosci.22-17-07331.2002Bernstein HG, Braunewell KH, Spilker C, Danos P, Baumann B, Funke S, Diekmann S, Gundelfinger ED, Bogerts B. 2002. Hippocampal expression of the calcium sensor protein visinin-like protein-1 in schizophrenia. NeuroReport. 13(4):393-396. https://doi.org/10.1097/00001756-200203250-00006Braunewell KH, Brackmann M, Schaupp M, Spilker C, Anand R, Gundelfinger ED. 2001. Intracellular neuronal calcium sensor (NCS) protein VILIP-1 modulates cGMP signalling pathways in transfected neural cells and cerebellar granule neurones. Journal of Neurochemistry. 78(6):1277-1286. https://doi.org/10.1046/j.1471-4159.2001.00506.xBraunewell KH, Riederer P, Spilker C, Gundelfinger ED, Bogerts B, Bernstein HG. 2001. Abnormal localization of two neuronal calcium sensor proteins, visinin-like proteins (VILIPs)-1 and -3, in neocortical brain areas of Alzheimer disease patients. Dementia and Geriatric Cognitive Disorders. 12(2):110-116. https://doi.org/10.1159/000051244Spilker C, Richter K, Smalla KH, Manahan-Vaughan D, Gundelfinger ED, Braunewell KH. 2000. The neuronal EF-hand calcium-binding protein visinin-like protein-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association. Neuroscience. 96(1):121-129. https://doi.org/10.1016/S0306-4522(99)00536-9Braunewell KH, Spilker C, Behnisch T, Gundelfinger ED. 1997. The neuronal calcium-sensor protein VILIP modulates cyclic AMP accumulation in stably transfected C6 glioma cells: Amino-terminal myristoylation determines functional activity. Journal of Neurochemistry. 68(5):2129-2139.Spilker C, Gundelfinger ED, Braunewell KH. 1997. Calcium- and myristoyl-dependent subcellular localization of the neuronal calcium-binding protein VILIP in transfected PC12 cells. Neuroscience Letters. 225(2):126-128. https://doi.org/10.1016/S0304-3940(97)00201-2 - Drittmittel
Drittmittel
2018 - 2022 (LSA)
Förderung eines Büros für Karriereentwicklung zur Sicherung der Chancengleichheit im wissenschaftlichen Umfeld