LIN Personal

Dr. Christina Spilker

EU- und Forschungsreferentin

Geschäftsstelle

Leibniz-Institut für Neurobiologie
Brenneckestr. 6
39118 Magdeburg
Deutschland
Telefon: +49 391 6263 92081
E-Mail: Christina.Spilker@lin-magdeburg.de
ORCID: 0000-0002-7996-7673

  • Publikationen

    Publikationen

    Grochowska KM, Gomes GM, Raman R, Kaushik R, Sosulina L, Kaneko H, Oelschlegel AM, Yuanxiang P, Reyes-Resina I, Bayraktar G, et al. 2023. Jacob-induced transcriptional inactivation of CREB promotes Aβ-induced synapse loss in Alzheimer's disease. The EMBO journal. 42(4):Article e112453. https://doi.org/10.15252/embj.2022112453

    Grochowska KM, Kaushik R, Gomes GM, Raman R, Bär J, Bayraktar G, Samer S, Reyes-Resina I, Spilker C, Woo MS, et al. 2020. A molecular mechanism by which amyloid-β induces inactivation of CREB in Alzheimer’s Disease. bioRxiv. https://doi.org/10.1101/2020.01.08.898304

    Andres-Alonso M, Ammar MR, Butnaru I, Gomes GM, Acuña Sanhueza G, Raman R, Yuanxiang P, Borgmeyer M, Lopez-Rojas J, Raza SA, et al. 2019. SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nature Communications. 10(1):Article 5448. https://doi.org/10.1038/s41467-019-13224-z

    Mikhaylova M, Bär J, van Bommel B, Schätzle P, YuanXiang PA, Raman R, Hradsky J, Konietzny A, Loktionov EY, Reddy PP, et al. 2018. Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines. Neuron. 97(5):1110-1125.e14. https://doi.org/10.1016/j.neuron.2018.01.046

    Spilker C, Grochowska KM, Kreutz MR. 2016. What do we learn from the murine Jacob/Nsmf gene knockout for human disease?. Rare Diseases. 4(1):e1241361. https://doi.org/10.1080/21675511.2016.1241361

    Spilker C, Nullmeier S, Grochowska KM, Schumacher A, Butnaru I, Macharadze T, Gomes GM, YuanXiang P, Bayraktar G, Rodenstein C, et al. 2016. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics. 12(3):Article e1005907. https://doi.org/10.1371/journal.pgen.1005907

    Reddy PP, Raghuram V, Hradsky J, Spilker C, Chakraborty A, Sharma Y, Mikhaylova M, Kreutz MR. 2014. Molecular dynamics of the neuronal EF-hand Ca2+-sensor Caldendrin. PLoS ONE. 9(7):Article e103186. https://doi.org/10.1371/journal.pone.0103186

    Karpova A, Mikhaylova M, Bera S, Bär J, Reddy PP, Behnisch T, Rankovic V, Spilker C, Bethge P, Sahin J, et al. 2013. Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell. 152(5):1119-1133. https://doi.org/10.1016/j.cell.2013.02.002

    Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, Janssen AL, Udvardi PT, Shiban E, Spilker C, et al. 2012. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 486(7402):256-260. https://doi.org/10.1038/nature11015

    Spilker C, Kreutz MR. 2010. RapGAPs in brain: Multipurpose players in neuronal Rap signalling. European Journal of Neuroscience. 32(1):1-9. https://doi.org/10.1111/j.1460-9568.2010.07273.x

    Dieterich DC, Karpova A, Mikhaylova M, Zdobnova I, König I, Landwehr M, Kreutz M, Smalla KH, Richter K, Landgraf P, et al. 2008. Caldendrin-Jacob: A protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biology. 6(2):286-306. https://doi.org/10.1371/journal.pbio.0060034

    Spilker C, Acuna Sanhueza G, Böckers TM, Kreutz MR, Gundelfinger ED. 2008. SPAR2, a novel SPAR-related protein with GAP activity for Rap1 and Rap2. Journal of Neurochemistry. 104(1):187-201. https://doi.org/10.1111/j.1471-4159.2007.04991.x

    Kreutz MR, König I, Mikhaylova M, Spilker C, Zuschratter W. 2008. Molecular mechanisms of dendritic spine plasticity in development and aging. Lajtha A, Perez-Polo JR, Rossner S, editors. In Developmental and aging changes. New York: Springer. pp. 245-259. (Handbook of Neurochemistry and Molecular Neurobiology).

    Sandoval M, Sandoval R, Thomas U, Spilker C, Smalla KH, Falcon R, Marengo JJ, Calderón R, Saavedra V, Heumann R, et al. 2007. Antagonistic effects of TrkB and p75NTR on NMDA receptor currents in post-synaptic densities transplanted into Xenopus oocytes. Journal of Neurochemistry. 101(6):1672-1684. https://doi.org/10.1111/j.1471-4159.2007.04519.x

    Wendholt D, Spilker C, Schmitt A, Dolnik A, Smalla KH, Proepper C, Bockmann J, Sobue K, Gundelfinger ED, Kreutz MR, et al. 2006. ProSAP-interacting protein 1 (ProSAPiP1), a novel protein of the postsynaptic density that links the spine-associated Rap-Gap (SPAR) to the scaffolding protein ProSAP2/Shank3. Journal of Biological Chemistry. 281(19):13805-13816. https://doi.org/10.1074/jbc.M601101200

    Blazejczyk M, Wojda U, Sobczak A, Spilker C, Bernstein HG, Gundelfinger ED, Kreutz MR, Kuznicki J. 2006. Ca2+-independent binding and cellular expression profiles question a significant role of calmyrin in transduction of Ca 2+-signals to Alzheimer's disease-related presenilin 2 in forebrain. Biochimica et Biophysica Acta - Molecular Basis of Disease. 1762(1):66-72. https://doi.org/10.1016/j.bbadis.2005.09.006

    Boeckers TM, Liedtke T, Spilker C, Dresbach T, Bockmann J, Kreutz MR, Gundelfinger ED. 2005. C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3. Journal of Neurochemistry. 92(3):519-524. https://doi.org/10.1111/j.1471-4159.2004.02910.x

    Spilker C, Braunewell KH. 2003. Calcium-myristoyl switch, subcellular localization, and calcium-dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons. Molecular and Cellular Neurosciences. 24(3):766-778. https://doi.org/10.1016/S1044-7431(03)00242-2

    Dresbach T, Hempelmann A, Spilker C, Tom Dieck S, Altrock WD, Zuschratter W, Garner CC, Gundelfinger ED. 2003. Functional regions of the presynaptic cytomatrix protein Bassoon: Significance for synaptic targeting and cytomatrix anchoring. Molecular and Cellular Neurosciences. 23(2):279-291. https://doi.org/10.1016/S1044-7431(03)00015-0

    Bernstein HG, Becker A, Keilhoff G, Spilker C, Gorczyca WA, Braunewell KH, Grecksch G. 2003. Brain region-specific changes in the expression of calcium sensor proteins after repeated applications of ketamine to rats. Neuroscience Letters. 339(2):95-98. https://doi.org/10.1016/S0304-3940(02)01482-9

    Spilker C, Gundelfinger ED, Braunewell KH. 2002. Evidence for different functional properties of the neuronal calcium sensor proteins VILIP-1 and VILIP-3: From subcellular localization to cellular function. Biochimica et Biophysica Acta - Proteins and Proteomics. 1600(1-2):118-127. https://doi.org/10.1016/S1570-9639(02)00452-1

    Spilker C, Dresbach T, Braunewell KH. 2002. Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. Journal of Neuroscience. 22(17):7331-7339. https://doi.org/10.1523/jneurosci.22-17-07331.2002

    Bernstein HG, Braunewell KH, Spilker C, Danos P, Baumann B, Funke S, Diekmann S, Gundelfinger ED, Bogerts B. 2002. Hippocampal expression of the calcium sensor protein visinin-like protein-1 in schizophrenia. NeuroReport. 13(4):393-396. https://doi.org/10.1097/00001756-200203250-00006

    Braunewell KH, Brackmann M, Schaupp M, Spilker C, Anand R, Gundelfinger ED. 2001. Intracellular neuronal calcium sensor (NCS) protein VILIP-1 modulates cGMP signalling pathways in transfected neural cells and cerebellar granule neurones. Journal of Neurochemistry. 78(6):1277-1286. https://doi.org/10.1046/j.1471-4159.2001.00506.x

    Braunewell KH, Riederer P, Spilker C, Gundelfinger ED, Bogerts B, Bernstein HG. 2001. Abnormal localization of two neuronal calcium sensor proteins, visinin-like proteins (VILIPs)-1 and -3, in neocortical brain areas of Alzheimer disease patients. Dementia and Geriatric Cognitive Disorders. 12(2):110-116. https://doi.org/10.1159/000051244

    Spilker C, Richter K, Smalla KH, Manahan-Vaughan D, Gundelfinger ED, Braunewell KH. 2000. The neuronal EF-hand calcium-binding protein visinin-like protein-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association. Neuroscience. 96(1):121-129. https://doi.org/10.1016/S0306-4522(99)00536-9

    Braunewell KH, Spilker C, Behnisch T, Gundelfinger ED. 1997. The neuronal calcium-sensor protein VILIP modulates cyclic AMP accumulation in stably transfected C6 glioma cells: Amino-terminal myristoylation determines functional activity. Journal of Neurochemistry. 68(5):2129-2139.

    Spilker C, Gundelfinger ED, Braunewell KH. 1997. Calcium- and myristoyl-dependent subcellular localization of the neuronal calcium-binding protein VILIP in transfected PC12 cells. Neuroscience Letters. 225(2):126-128. https://doi.org/10.1016/S0304-3940(97)00201-2
  • Drittmittel

    Drittmittel

    2018 - 2022 (LSA)
    Förderung eines Büros für Karriereentwicklung zur Sicherung der Chancengleichheit im wissenschaftlichen Umfeld

Diese Seite teilen: