LIN Personal
Prof. Dr. Frank Angenstein
Gast
Combinatorial NeuroImaging
Leibniz-Institut für NeurobiologieBrenneckestr. 6
39118 Magdeburg
Deutschland
Telefon: +49 391 6724-537
E-Mail: Frank.Angenstein@lin-magdeburg.de
ORCID: 0000-0003-1157-714X
- Publikationen
Publikationen
Helbing C, Brocka MJ, Arboit A, Lippert MT, Angenstein F. 2024. Chemogenetic inhibition of dopaminergic neurons reduces stimulus-induced dopamine release, thereby altering the hemodynamic response function in the prefrontal cortex. Imaging Neuroscience. 2:1-16. https://doi.org/10.1162/imag_a_00200Arboit A, Krautwald K, Angenstein F. 2024. Hemodynamic responses in the rat hippocampus are simultaneously controlled by at least two independently acting neurovascular coupling mechanisms. Journal of Cerebral Blood Flow and Metabolism. 44(6):896-910. https://doi.org/10.1177/0271678X231221039Galldiks N, Angenstein F, Werner J-M, Bauer EK, Gutsche R, Fink GR, Langen K-J, Lohmann P. 2022. Use of advanced neuroimaging and artificial intelligence in meningiomas. Brain pathology. 32(2):Article e13015. https://doi.org/10.1111/bpa.13015Strauch C, Hoang T-H, Angenstein F, Manahan-Vaughan D. 2022. Olfactory Information Storage Engages Subcortical and Cortical Brain Regions That Support Valence Determination. Cerebral Cortex. 32(4):689-708. https://doi.org/10.1093/cercor/bhab226Arboit A, Krautwald K, Angenstein F. 2022. The cholinergic system modulates negative BOLD responses in the prefrontal cortex once electrical perforant pathway stimulation triggers neuronal afterdischarges in the hippocampus. Journal of Cerebral Blood Flow and Metabolism. 42(2):364-380. https://doi.org/10.1177/0271678X211049820Arboit A, Ku S-P, Krautwald K, Angenstein F. 2021. Brief neuronal afterdischarges in the rat hippocampus lead to transient changes in oscillatory activity and to a very long-lasting decline in BOLD signals without inducing a hypoxic state. NeuroImage. 245:Article 118769. https://doi.org/10.1016/j.neuroimage.2021.118769Waldt N, Kesseler C, Fala P, John P, Kirches E, Angenstein F, Mawrin C. 2021. Crispr/Cas-based modeling of NF2 loss in meningioma cells. Journal of Neuroscience Methods. 356:Article 109141. https://doi.org/10.1016/j.jneumeth.2021.109141Helbing C, Angenstein F. 2020. Frequency-dependent electrical stimulation of fimbria-fornix preferentially affects the mesolimbic dopamine system or prefrontal cortex. Brain Stimulation. 13(3):753-764. https://doi.org/10.1016/j.brs.2020.02.026Angenstein F. 2019. The role of ongoing neuronal activity for baseline and stimulus-induced BOLD signals in the rat hippocampus. NeuroImage. 202:Article 116082. https://doi.org/10.1016/j.neuroimage.2019.116082Krautwald K, Mahnke L, Angenstein F. 2019. Electrical Stimulation of the Lateral Entorhinal Cortex Causes a Frequency-Specific BOLD Response Pattern in the Rat Brain. Frontiers in Neuroscience. 13(MAY):Article 539. https://doi.org/10.3389/fnins.2019.00539Bovet-Carmona M, Krautwald K, Menigoz A, Vennekens R, Balschun D, Angenstein F. 2019. Low frequency pulse stimulation of Schaffer collaterals in Trpm4−/− knockout rats differently affects baseline BOLD signals in target regions of the right hippocampus but not BOLD responses at the site of stimulation. NeuroImage. 188:347-356. https://doi.org/10.1016/j.neuroimage.2018.12.020Bovet-Carmona M, Menigoz A, Pinto S, Tambuyzer T, Krautwald K, Voets T, Aerts JM, Angenstein F, Vennekens R, Balschun D. 2018. Disentangling the role of TRPM4 in hippocampus-dependent plasticity and learning: an electrophysiological, behavioral and FMRI approach. Brain Structure and Function. 223(8):3557-3576. https://doi.org/10.1007/s00429-018-1706-1Annamneedi A, Caliskan G, Müller S, Montag D, Budinger E, Angenstein F, Fejtova A, Tischmeyer W, Gundelfinger ED, Stork O. 2018. Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance. Brain Structure and Function. 223(7):3423-3445. https://doi.org/10.1007/s00429-018-1692-3Brocka M, Helbing C, Vincenz D, Scherf T, Montag D, Goldschmidt J, Angenstein F, Lippert M. 2018. Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits. NeuroImage. 177:88-97. https://doi.org/10.1016/j.neuroimage.2018.04.059Henschke JU, Oelschlegel AM, Angenstein F, Ohl FW, Goldschmidt J, Kanold PO, Budinger E. 2018. Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices. Brain Structure and Function. 223(3):1165-1190. https://doi.org/10.1007/s00429-017-1549-1Angenstein F. 2018. A Combined fMRI and Electrophysiological Approach to Study Signal Processing and Signal Propagation in the Rodent Hippocampus. Manahan-Vaughan D, editor. In Handbook of in Vivo Neural Plasticity Techniques. Elsevier. pp. 425-439. (Handbook of Behavioral Neuroscience). https://doi.org/10.1016/B978-0-12-812028-6.00023-9Pöttker B, Stöber F, Hummel R, Angenstein F, Radyushkin K, Goldschmidt J, Schäfer MKE. 2017. Traumatic brain injury causes long-term behavioral changes related to region-specific increases of cerebral blood flow. Brain Structure and Function. 222(9):4005-4021. https://doi.org/10.1007/s00429-017-1452-9Helbing C, Tischmeyer W, Angenstein F. 2017. Late effect of dopamine D1/5 receptor activation on stimulus-induced BOLD responses in the hippocampus and its target regions depends on the history of previous stimulations. NeuroImage. 152:119-129. https://doi.org/10.1016/j.neuroimage.2017.02.077Scherf T, Angenstein F. 2017. Hippocampal CA3 activation alleviates fMRI-BOLD responses in the rat prefrontal cortex induced by electrical VTA stimulation. PLoS ONE. 12(2):Article e0172926. https://doi.org/10.1371/journal.pone.0172926Riemann S, Helbing C, Angenstein F. 2017. From unspecific to adjusted, how the BOLD response in the rat hippocampus develops during consecutive stimulations. Journal of Cerebral Blood Flow and Metabolism. 37(2):590-604. https://doi.org/10.1177/0271678X16634715Bhattacharya S, Herrera-Molina R, Sabanov V, Ahmed T, Iscru E, Stöber F, Richter K, Fischer KD, Angenstein F, Goldschmidt J, et al. 2017. Genetically induced retrograde amnesia of associative memories after neuroplastin ablation. Biological Psychiatry. 81(2):124-135. https://doi.org/10.1016/j.biopsych.2016.03.2107Helbing C, Brocka M, Scherf T, Lippert MT, Angenstein F. 2016. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway. Journal of Cerebral Blood Flow and Metabolism. 36(12):2177-2193. https://doi.org/10.1177/0271678X15615535Radtke-Schuller S, Schuller G, Angenstein F, Grosser OS, Goldschmidt J, Budinger E. 2016. Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Structure and Function. 221 Suppl 1(Suppl. 1):1-272. https://doi.org/10.1007/s00429-016-1259-0Spilker C, Nullmeier S, Grochowska KM, Schumacher A, Butnaru I, Macharadze T, Gomes GM, YuanXiang P, Bayraktar G, Rodenstein C, et al. 2016. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics. 12(3):Article e1005907. https://doi.org/10.1371/journal.pgen.1005907Scherf T, Angenstein F. 2015. Postsynaptic and spiking activity of pyramidal cells, the principal neurons in the rat hippocampal CA1 region, does not control the resultant BOLD response: A combined electrophysiologic and fMRI approach. Journal of Cerebral Blood Flow and Metabolism. 35(4):565-575. https://doi.org/10.1038/jcbfm.2014.252Kolodziej A, Lippert M, Angenstein F, Neubert J, Pethe A, Grosser OS, Amthauer H, Schroeder UH, Reymann KG, Scheich H, et al. 2014. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice. NeuroImage. 103:171-180. https://doi.org/10.1016/j.neuroimage.2014.09.023Szabó B, Török J, Somfai E, Wegner S, Stannarius R, Böse A, Rose G, Angenstein F, Börzsönyi T. 2014. Evolution of shear zones in granular materials. Physical Review E. 90(3):Article 032205. https://doi.org/10.1103/PhysRevE.90.032205Angenstein F. 2014. The actual intrinsic excitability of granular cells determines the ruling neurovascular coupling mechanism in the rat dentate gyrus. Journal of Neuroscience. 34(25):8529-8545. https://doi.org/10.1523/JNEUROSCI.0472-14.2014Hunger M, Budinger E, Zhong K, Angenstein F. 2014. Visualization of acute focal lesions in rats with experimental autoimmune encephalomyelitis by magnetic nanoparticles, comparing different MRI sequences including phase imaging. Journal of Magnetic Resonance Imaging. 39(5):1126-1135. https://doi.org/10.1002/jmri.24280Kliese N, Gobrecht P, Pachow D, Andrae N, Wilisch-Neumann A, Kirches E, Riek-Burchardt M, Angenstein F, Reifenberger G, Riemenschneider M, et al. 2013. MiRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells. Oncogene. 32(39):4712-4720. https://doi.org/10.1038/onc.2012.468Krautwald K, Min HK, Lee KH, Angenstein F. 2013. Synchronized electrical stimulation of the rat medial forebrain bundle and perforant pathway generates an additive BOLD response in the nucleus accumbens and prefrontal cortex. NeuroImage. 77:14-25. https://doi.org/10.1016/j.neuroimage.2013.03.046Angenstein F, Krautwald K, Wetzel W, Scheich H. 2013. Perforant pathway stimulation as a conditioned stimulus for active avoidance learning triggers BOLD responses in various target regions of the hippocampus: A combined fMRI and electrophysiological study. NeuroImage. 75:213-227. https://doi.org/10.1016/j.neuroimage.2013.03.007Pachow D, Andrae N, Kliese N, Angenstein F, Stork O, Wilisch-Neumann A, Kirches E, Mawrin C. 2013. MTORC1 inhibitors suppress meningioma growth in mouse models. Clinical Cancer Research. 19(5):1180-1189. https://doi.org/10.1158/1078-0432.CCR-12-1904Helbing C, Werner G, Angenstein F. 2013. Variations in the temporal pattern of perforant pathway stimulation control the activity in the mesolimbic pathway. NeuroImage. 64(1):43-60. https://doi.org/10.1016/j.neuroimage.2012.09.001Haroon F, Händel U, Angenstein F, Goldschmidt J, Kreutzmann P, Lison H, Fischer KD, Scheich H, Wetzel W, Schlüter D, et al. 2012. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS ONE. 7(4):e35516. https://doi.org/10.1371/journal.pone.0035516Tiede R, Krautwald K, Fincke A, Angenstein F. 2012. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing. Journal of Cerebral Blood Flow and Metabolism. 32(3):570-584. https://doi.org/10.1038/jcbfm.2011.182Krautwald K, Angenstein F. 2012. Low frequency stimulation of the perforant pathway generates anesthesia-specific variations in neural activity and BOLD responses in the rat dentate gyrus. Journal of Cerebral Blood Flow and Metabolism. 32(2):291-305. https://doi.org/10.1038/jcbfm.2011.126Schreiber S, Bueche CZ, Garz C, Kropf S, Angenstein F, Goldschmidt J, Neumann J, Heinze HJ, Goertler M, Reymann KG, et al. 2012. The pathologic cascade of cerebrovascular lesions in SHRSP: Is erythrocyte accumulation an early phase. Journal of Cerebral Blood Flow and Metabolism. 32(2):278-290. https://doi.org/10.1038/jcbfm.2011.122Heyden A, Ionescu MCS, Romorini S, Kracht B, Ghiglieri V, Calabresi P, Seidenbecher C, Angenstein F, Gundelfinger ED. 2011. Hippocampal enlargement in Bassoon-mutant mice is associated with enhanced neurogenesis, reduced apoptosis, and abnormal BDNF levels. Cell and Tissue Research. 346(1):11-26. https://doi.org/10.1007/s00441-011-1233-3Börzsönyi T, Unger T, Szabó B, Wegner S, Angenstein F, Stannarius R. 2011. Reflection and exclusion of shear zones in inhomogeneous granular materials. Soft Matter. 7(18):8330-8336. https://doi.org/10.1039/c1sm05762fKoch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, Stellmacher A, Ahuja R, Grimm J, Schüler S, Müller A, et al. 2011. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin i. EMBO Journal. 30(24):4955-4969. https://doi.org/10.1038/emboj.2011.339Angenstein F, Krautwald K, Scheich H. 2010. The current functional state of local neuronal circuits controls the magnitude of a BOLD response to incoming stimuli. NeuroImage. 50(4):1364-1375. https://doi.org/10.1016/j.neuroimage.2010.01.070Fischer D, Finger T, Angenstein F, Stannarius R. 2009. Diffusive and subdiffusive axial transport of granular material in rotating mixers. Physical Review E. 80(6):Article 061302. https://doi.org/10.1103/PhysRevE.80.061302Frisch C, Hüsch K, Angenstein F, Kudin A, Kunz W, Elger CE, Helmstaedter C. 2009. Dose-dependent memory effects and cerebral volume changes after in utero exposure to valproate in the rat. Epilepsia. 50(6):1432-1441. https://doi.org/10.1111/j.1528-1167.2008.01943.xBehr B, Schnabel R, Mirastschijski U, Ibrahim B, Angenstein F, Schneider W. 2009. Magnetic resonance imaging monitoring of peripheral nerve regeneration following neurotmesis at 4.7 tesla. Plastic and Reconstructive Surgery. 123(6):1778-1788. https://doi.org/10.1097/PRS.0b013e3181a3f343Angenstein F, Kammerer E, Scheich H. 2009. The BOLD response in the rat hippocampus depends rather on local processing of signals than on the input or output activity. A combined functional MRI and electrophysiological study. Journal of Neuroscience. 29(8):2428-2439. https://doi.org/10.1523/JNEUROSCI.5015-08.2009Heyden A, Angenstein F, Sallaz M, Seidenbecher C, Montag D. 2008. Abnormal axonal guidance and brain anatomy in mouse mutants for the cell recognition molecules close homolog of L1 and NgCAM-related cell adhesion molecule. Neuroscience. 155(1):221-233. https://doi.org/10.1016/j.neuroscience.2008.04.080Angenstein F, Hilfert L, Zuschratter W, Altrock WD, Niessen HG, Gundelfinger ED. 2008. Morphological and metabolic changes in the cortex of mice lacking the functional presynaptic active zone protein bassoon: A combined 1H-NMR spectroscopy and histochemical study. Cerebral Cortex. 18(4):890-897. https://doi.org/10.1093/cercor/bhm122Angenstein F, Kammerer E, Niessen HG, Frey JU, Scheich H, Frey S. 2007. Frequency-dependent activation pattern in the rat hippocampus, a simultaneous electrophysiological and fMRI study. NeuroImage. 38(1):150-163. https://doi.org/10.1016/j.neuroimage.2007.07.022Niessen HG, Debska-Vielhaber G, Sander K, Angenstein F, Ludolph AC, Hilfert L, Willker W, Leibfritz D, Heinze HJ, Kunz WS, et al. 2007. Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis. European Journal of Neuroscience. 25(6):1669-1677. https://doi.org/10.1111/j.1460-9568.2007.05415.xAngenstein F, Niessen HG, Goldschmidt J, Lison H, Altrock WD, Gundelfinger ED, Scheich H. 2007. Manganese-enhanced MRI reveals structural and functional changes in the cortex of bassoon mutant mice. Cerebral Cortex. 17(1):28-36. https://doi.org/10.1093/cercor/bhj121Dudanova I, Sedej S, Ahmad M, Masius H, Sargsyan V, Zhang W, Riedel D, Angenstein F, Schild D, Rupnik M, et al. 2006. Important contribution of alpha-neurexins to Ca2+-triggered exocytosis of secretory granules. Journal of Neuroscience. 26(41):10599-10613. https://doi.org/10.1523/JNEUROSCI.1913-06.2006Niessen HG, Angenstein F, Sander K, Kunz WS, Teuchert M, Ludolph AC, Heinze HJ, Scheich H, Vielhaber S. 2006. In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient. Experimental Neurology. 201(2):293-300. https://doi.org/10.1016/j.expneurol.2006.04.007Deutscher A, Niessen HG, Angenstein F, Goldschmidt J, Scheich H, Schulze H. 2006. Comparison of estimates for volumes of brain ablations derived from structural MRI and classical histology. Journal of Neuroscience Methods. 156(1-2):136-139. https://doi.org/10.1016/j.jneumeth.2006.02.009Niessen HG, Angenstein F, Vielhaber S, Frisch C, Kudin A, Elger CE, Heinze HJ, Scheich H, Kunz WS. 2005. Volumetric magnetic resonance imaging of functionally relevant structural alterations in chronic epilepsy after pilocarpine-induced status epilepticus in rats. Epilepsia. 46(7):1021-1026. https://doi.org/10.1111/j.1528-1167.2005.60704.xAngenstein F, Niessen HG, Goldschmidt J, Vielhaber S, Ludolph AC, Scheich H. 2004. Age-dependent changes in MRI of motor brain stem nuclei in a mouse model of ALS. NeuroReport. 15(14):2271-2274. https://doi.org/10.1097/00001756-200410050-00026Angenstein F, Riedel G, Reymann KG, Staak S. 1999. Transient translocation of protein kinase Cγ in hippocampal long-term potentiation depends on activation of metabotropic glutamate receptors. Neuroscience. 93(4):1289-1295. https://doi.org/10.1016/S0306-4522(99)00315-2Angenstein F, Buchner K, Staak S. 1999. Age-dependent differences in glutamate-induced phosphorylation systems in rat hippocampal slices. Hippocampus. 9(2):173-185. https://doi.org/10.1002/(SICI)1098-1063(1999)9:2<173::AID-HIPO8>3.0.CO;2-KSmalla KH, Angenstein F, Richter K, Gundelfinger ED, Staak S. 1998. Identification of fucose α(1-2) galactose epitope-containing glycoproteins from rat hippocampus. NeuroReport. 9(5):813-817. https://doi.org/10.1097/00001756-199803300-00009Angenstein F, Staak S. 1997. Receptor-mediated activation of protein kinase C in hippocampal long-term potentiation: Facts, problems and implications. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 21(3):427-454. https://doi.org/10.1016/S0278-5846(97)00012-2Angenstein F, Hirschfelder M, Staak S. 1997. Activation of metabotropic glutamate receptors increases endogenous protein kinase C substrate phosphorylation in adult hippocampal slices. Brain Research. 745(1-2):46-54. https://doi.org/10.1016/S0006-8993(96)01129-8Staak S, Behnisch T, Angenstein F. 1995. Hippocampal long-term potentiation: transient increase but no persistent translocation of protein kinase C isoenzymes α and β. Brain Research. 682(1-2):55-62. https://doi.org/10.1016/0006-8993(95)00319-LAngenstein F, Riedel G, Staak S, Reymann KG. 1994. Hippocampal long-term potentiation in vivo induces translocation of protein kinase Cγ. NeuroReport. 5(4):381-384. https://doi.org/10.1097/00001756-199401120-00002Angenstein F, Matthies H, Staeck S, Reymann KG, Staak S. 1992. The maintenance of hippocampal long-term potentiation is paralleled by a dopamine-dependent increase in glycoprotein fucosylation. Neurochemistry International. 21(3):403-408. https://doi.org/10.1016/0197-0186(92)90191-SAngenstein F, Staak S, Jork R. 1992. Phorbol ester-induced changes in rat hippocampal glycoprotein fucosylation. Neuroscience Letters. 135(2):269-272. https://doi.org/10.1016/0304-3940(92)90453-E