LIN Personal
Dr. Liudmila Sosulina
Wissenschaftlerin
Zelluläre Neurowissenschaften
Leibniz-Institut für NeurobiologieBrenneckestr. 6
39118 Magdeburg
Deutschland
Telefon: +49 391 6263 93311
E-Mail: Liudmila.Sosulina@lin-magdeburg.de
- Publikationen
Publikationen
Kuhn F, Mocellin P, Pupe S, Wang L, Lemire AL, Sosulina L, Barnstedt O, Spruston N, Cembrowski MS, Remy S. 2024. Neuronal heterogeneity in the medial septum and diagonal band of Broca: classes and continua. bioRxiv. (bioRxiv). https://doi.org/10.1101/2024.08.27.609593Grochowska KM, Gomes GM, Raman R, Kaushik R, Sosulina L, Kaneko H, Oelschlegel AM, Yuanxiang P, Reyes-Resina I, Bayraktar G, et al. 2023. Jacob-induced transcriptional inactivation of CREB promotes Aβ-induced synapse loss in Alzheimer's disease. The EMBO journal. 42(4):Article e112453. https://doi.org/10.15252/embj.2022112453Sosulina L, Mittag M, Geis H-R, Hoffmann K, Klyubin I, Qi Y, Steffen J, Friedrichs D, Henneberg N, Fuhrmann F, et al. 2021. Hippocampal hyperactivity in a rat model of Alzheimer's disease. Journal of Neurochemistry. 157(6):2128-2144. https://doi.org/10.1111/jnc.15323Korvasová K, Ludwig F, Kaneko H, Sosulina L, Tetzlaff T, Remy S, Mikulovic S. 2021. Locomotion induced by medial septal glutamatergic neurons is linked to intrinsically generated persistent firing. bioRxiv. https://doi.org/10.1101/2021.04.23.441122Bertan F, Wischhof L, Sosulina L, Mittag M, Dalügge D, Fornarelli A, Gardoni F, Marcello E, Di Luca M, Fuhrmann M, et al. 2020. Loss of Ryanodine Receptor 2 impairs neuronal activity-dependent remodeling of dendritic spines and triggers compensatory neuronal hyperexcitability. Cell Death and Differentiation. 27(12):3354-3373. https://doi.org/10.1038/s41418-020-0584-2Justus D, Dalügge D, Bothe S, Fuhrmann F, Hannes C, Kaneko H, Friedrichs D, Sosulina L, Schwarz I, Elliott DA, et al. 2017. Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nature Neuroscience. 20(1):16-19. https://doi.org/10.1038/nn.4447Sosulina L, Strippel C, Romo-Parra H, Walter AL, Kanyshkova T, Sartori SB, Lange MD, Singewald N, Pape HC. 2015. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. Journal of Neurophysiology. 114(4):2500-2508. https://doi.org/10.1152/jn.00883.2014Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuhrmann M, Remy S. 2015. Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. Neuron. 86(5):1253-1264. https://doi.org/10.1016/j.neuron.2015.05.001Romo-Parra H, Blaesse P, Sosulina L, Pape HC. 2015. Neurosteroids increase tonic GABAergic inhibition in the lateral section of the central amygdala in mice. Journal of Neurophysiology. 113(9):3421-3431. https://doi.org/10.1152/jn.00045.2015Lange MD, Jüngling K, Paulukat L, Vieler M, Gaburro S, Sosulina L, Blaesse P, Sreepathi HK, Ferraguti F, Pape HC. 2014. Glutamic acid decarboxylase 65: A link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization. Neuropsychopharmacology. 39(9):2211-2220. https://doi.org/10.1038/npp.2014.72Jüngling K, Liu X, Lesting J, Coulon P, Sosulina L, Reinscheid RK, Pape HC. 2012. Activation of neuropeptide S-expressing neurons in the locus coeruleus by corticotropin-releasing factor. Journal of Physiology. 590(16):3701-3717. https://doi.org/10.1113/jphysiol.2011.226423Sangha S, Ilenseer J, Sosulina L, Lesting J, Pape HC. 2012. Differential regulation of glutamic acid decarboxylase gene expression after extinction of a recent memory vs. intermediate memory. Learning and Memory. 19(5):194-200. https://doi.org/10.1101/lm.025874.112Graebenitz S, Lesting J, Sosulina L, Seidenbecher T, Pape HC. 2010. Alteration of NMDA receptor-mediated synaptic interactions in the lateral amygdala associated with seizure activity in a mouse model of chronic temporal lobe epilepsy. Epilepsia. 51(9):1754-1762. https://doi.org/10.1111/j.1528-1167.2010.02561.xSosulina L, Graebenitz S, Pape HC. 2010. GABAergic interneurons in the mouse lateral amygdala: A classification study. Journal of Neurophysiology. 104(2):617-626. https://doi.org/10.1152/jn.00207.2010Jüngling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD, Okamura N, Duangdao DM, Xu YL, Reinscheid RK, et al. 2008. Neuropeptide S-mediated control of fear expression and extinction: Role of intercalated GABAergic neurons in the amygdala. Neuroforum. 14(4):279-282. https://doi.org/10.1515/nf-2008-0405Sosulina L, Schwesig G, Seifert G, Pape HC. 2008. Neuropeptide Y activates a G-protein-coupled inwardly rectifying potassium current and dampens excitability in the lateral amygdala. Molecular and Cellular Neuroscience. 39(3):491-498. https://doi.org/10.1016/j.mcn.2008.08.002Jüngling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD, Okamura N, Duangdao DM, Xu YL, Reinscheid RK, et al. 2008. Neuropeptide S-Mediated Control of Fear Expression and Extinction: Role of Intercalated GABAergic Neurons in the Amygdala. Neuron. 59(2):298-310. https://doi.org/10.1016/j.neuron.2008.07.002Meis S, Munsch T, Sosulina L, Pape HC. 2007. Postsynaptic mechanisms underlying responsiveness of amygdaloid neurons to cholecystokinin are mediated by a transient receptor potential-like current. Molecular and Cellular Neuroscience. 35(2):356-367. https://doi.org/10.1016/j.mcn.2007.03.012Sosulina L, Meis S, Seifert G, Steinhäuser C, Pape HC. 2006. Classification of projection neurons and interneurons in the rat lateral amygdala based upon cluster analysis. Molecular and Cellular Neuroscience. 33(1):57-67. https://doi.org/10.1016/j.mcn.2006.06.005Meis S, Sosulina L, Schulz S, Höllt V, Pape HC. 2005. Mechanisms of somatostatin-evoked responses in neurons of the rat lateral amygdala. European Journal of Neuroscience. 21(3):755-762. https://doi.org/10.1111/j.1460-9568.2005.03922.x